Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials.
نویسندگان
چکیده
In this Letter, we demonstrate theoretically that electromagnetic waves can be "squeezed" and tunneled through very narrow channels filled with epsilon-near-zero (ENZ) materials. We show that the incoming planar wave front is replicated at the output interface, independently of the specific geometry of the channel. A closed analytical formula is derived for the scattering parameters of a particular class of geometries. It is discussed that in some cases the isotropy of the ENZ material may not be an issue. A metamaterial realization of an anisotropic ENZ material is suggested and numerically studied.
منابع مشابه
Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials
In this work, we investigate the detailed theory of the supercoupling, anomalous tunneling effect, and field confinement originally identified by Silveirinha and Engheta [Phys. Rev. Lett. 97, 157403 (2006)], where we demonstrated the possibility of using materials with permittivity ε near zero to drastically improve the transmission of electromagnetic energy through a narrow irregular channel w...
متن کاملExperimental characterization of optical nonlocality in metal-dielectric multilayer metamaterials
The optical nonlocality in metal-dielectric multilayer metamaterials is characterized experimentally as a function of the angle of incidence with respect to the TE-polarized incident light. The physical mechanism of the difference between the nonlocal effective permittivity and the effective-medium-theory-based effective permittivity depending on the incident angle is theoretically revealed thr...
متن کاملReflectionless Sharp Bends and Corners in Waveguides Using Epsilon-Near-Zero Effects
Following our recent theoretical and experimental results that show how zero-permittivity metamaterials may provide anomalous tunneling and energy squeezing through ultranarrow waveguide channels, here we report an experimental investigation of the bending features relative to this counterintuitive resonant effect. We generate the required effectively zero permittivity using a waveguide operati...
متن کاملLight squeezing through arbitrarily shaped plasmonic channels and sharp bends
We propose a mechanism for optical energy squeezing and anomalous light transmission through arbitrarilyshaped plasmonic ultranarrow channels and bends connecting two larger plasmonic metal-insulator-metal waveguides. It is shown how a proper design of subwavelength optical channels at cutoff, patterned by plasmonic implants and connecting larger plasmonic waveguides, may allow enhanced resonan...
متن کاملTunneling of Electromagnetic Energy through Subwavelength Channels and Bends using Îμ-Near-Zero Materials
In this Letter, we demonstrate theoretically that electromagnetic waves can be "squeezed" and tunneled through very narrow channels filled with ε-near-zero (ENZ) materials. We show that the incoming planar wave front is replicated at the output interface, independently of the specific geometry of the channel. A closed analytical formula is derived for the scattering parameters of a particular c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 97 15 شماره
صفحات -
تاریخ انتشار 2006